Uniqueness of Unitary Structure for Unitarizable Fusion Categories

نویسندگان

چکیده

Abstract We show that every unitarizable fusion category, and more generally semisimple $$\textrm{C}^*$$ C ∗ -tensor admits a unique unitary structure. Our proof is based on categorified polar decomposition theorem for monoidal equivalences between such categories. prove analogous results braided categories module

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-unitary fusion categories and their doubles via endomorphisms

Article history: Received 10 March 2016 Accepted 17 January 2017 Available online xxxx Communicated by Dan Voiculescu

متن کامل

On a Family of Non-unitarizable Ribbon Categories

We consider several families of categories. The first are quotients of Andersen’s tilting module categories for quantum groups of Lie type B at odd roots of unity. The second consists of categories of type BC constructed from idempotents in BMW -algebras. Our main result is to show that these families coincide as braided tensor categories using a recent theorem of Tuba and Wenzl. By appealing t...

متن کامل

Categories without Uniqueness of cod and dom

where ◦o1,o2,o3 : 〈o2,o3〉×〈o1,o2〉 → 〈o1,o3〉 that satisfies usual conditions (associativity and the existence of the identities). This approach is closer to the way in which categories are presented in homological algebra (e.g. [1], pp.58-59). We do not assume that 〈o1,o2〉’s are mutually disjoint. If f is simultaneously a morphism from o1 to o2 and o1 to o2 (o1 6= o1) than different compositions...

متن کامل

Fusion Categories Of

We classify semisimple rigid monoidal categories with two iso-morphism classes of simple objects over the field of complex numbers. In the appendix written by P. Etingof it is proved that the number of semisimple Hopf algebras with a given finite number of irreducible representations is finite.

متن کامل

Non-cyclotomic Fusion Categories

Etingof, Nikshych and Ostrik ask in [8, §2] if every fusion category can be completely defined over a cyclotomic field. We show that this is not the case: in particular one of the fusion categories coming from the Haagerup subfactor [2] and one coming from the newly constructed extended Haagerup subfactor [3] can not be completely defined over a cyclotomic field. On the other hand, we show that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Physics

سال: 2022

ISSN: ['0010-3616', '1432-0916']

DOI: https://doi.org/10.1007/s00220-022-04425-7